Imagine the Universe!
Imagine Home  |   Teachers' Corner   |  

So what, if anything, remains of the core of the original star? Unlike in smaller stars, where the core becomes essentially all carbon and stable, the intense pressure inside the supergiant causes the electrons to be forced inside of (or combined with) the protons, forming neutrons. In fact, the whole core of the star becomes nothing but a dense ball of neutrons. It is possible that this core will remain intact after the supernova, and be called a neutron star. However, if the original star was very massive (say 15 or more times the mass of our Sun), even the neutrons will not be able to survive the core collapse and a black hole will form!

IV. More about the Stellar Endpoints

A. White/Black Dwarfs

A star like our Sun will become a white dwarf when it has exhausted its nuclear fuel. Near the end of its nuclear burning stage, such a star expels most of its outer material (creating a planetary nebula) until only the hot (T > 100,000 K) core remains, which then settles down to become a young white dwarf. A typical white dwarf is half as massive as the Sun, yet only slightly bigger than the Earth. This makes white dwarfs one of the densest forms of matter, surpassed only by neutron stars.

White dwarfs have no way to keep themselves hot (unless they accrete matter from other closeby stars); therefore, they cool down over the course of many billions of years. Eventually, such stars cool completely and become black dwarfs. Black dwarfs do not radiate at all.

Many nearby, young white dwarfs have been detected as sources of soft X-rays (i.e. lower-energy X-rays); soft X-ray and extreme ultraviolet observations enable astronomers to study the composition and structure of the thin atmospheres of these stars.

B. Neutron Stars

Neutron stars are typically about ten miles in diameter, have about 1.4 times the mass of our Sun, and spin very rapidly (one revolution takes mere seconds!). Neutron stars are fascinating because they are the densest objects known. Due to its small size and high density, a neutron star possesses a surface gravitational field about 300,000 times that of Earth.

Neutron stars also have very intense magnetic fields - about 1,000,000,000,000 times stronger than Earth's. Neutron stars may "pulse" due to electrons accelerated near the magnetic poles, which are not aligned with the rotation axis of the star. These electrons travel outward from the neutron star, until they reach the point at which they would be forced to travel faster than the speed of light in order to still co-rotate with the star. At this radius, the electrons must stop, and they release some of their kinetic energy in the form of X-rays and gamma-rays. External viewers see these pulses of radiation whenever the magnetic pole is visible. The pulses come at the same rate as the rotation of the neutron star, and thus, appear periodic. Neutron stars which emit such pulses are called pulsars.




Back Index Next
Download a pdf version.

If words seem to be missing from the articles, please read this.

Imagine the Universe! is a service of the High Energy Astrophysics Science Archive Research Center (HEASARC), Dr. Alan Smale (Director), within the Astrophysics Science Division (ASD) at NASA's Goddard Space Flight Center.

The Imagine Team
Project Leader: Dr. Barbara Mattson
Curator: Meredith Gibb
Responsible NASA Official: Phil Newman
All material on this site has been created and updated between 1997-2014.
This page last updated: Thursday, 21-Nov-2002 11:20:09 EST