Lotto or Life: What are the Chances ?

Activity 1/ Part B

Next, we look at a lottery game which is slightly more complicated than Pick 3. This time we will examine the theoretical probability of winning a multiple digit game such as "Lotto". If we chose a certain series of 7 numbers, each less than 40 as is allowed in "Lotto", what would be our chances of winning?

If we calculate,

$$
\mathrm{W}=\mathrm{a} * \mathrm{~b} * \mathrm{c} * \mathrm{~d} * \mathrm{e} * \mathrm{f} * \mathrm{~g}
$$

where,

> W = The probability of winning the "Lotto"
> $a=$ The probability of 'getting' the first number
> $b=$ The probability of 'getting' the second number
> $c=$ The probability of 'getting' the third number
> $d=$ The probability of 'getting' the fourth number
> $e=$ The probability of 'getting' the fifth number
> $\mathrm{f}=$ The probability of 'getting' the sixth number
> $\mathrm{g}=$ The probability of 'getting' the seventh number

If we know that each number is one of forty and a given number cannot be called twice, we substitute

$$
\begin{aligned}
& \mathrm{W}=\mathrm{a} * \mathrm{~b} * \mathrm{c} * \mathrm{~d} * \mathrm{e} * \mathrm{f} * \mathrm{~g} \\
& \mathrm{~W}=(1 / 40)(1 / 39)(1 / 38)(1 / 37)(1 / 36)(1 / 35)(1 / 34) \\
& \mathrm{W}=1 / 93,963,542,400
\end{aligned}
$$

