Swift

Angling For Gamma-ray Bursts

Student Worksheet

Name:_________________________

Step 1: Plotting the Satellites and Calculating the Delay Times

  1. Length of one square (1st measurement) ______________ (cm)
    Length of one square (2nd measurement) _____________ (cm)
    Average of two measurements ______________ (cm)
  2. tS1 = __________ minutes
    tS2 = __________ minutes
  3. dS1= ______________ meters
    dS2= ______________ meters
  4. dS1= ______________ light minutes
    dS2= ______________ light minutes
    ______________________________________________ ______________________________________________ ______________________________________________

Step 2: Plotting the Delay Times Using the Light Rulers

  1. dS1 = ______________ cm on the graph
    dS2 = ______________ cm on the graph

Step 3: Adding a Third Satellite

  1. tS3 = __________ minutes _______ seconds
  2. tS3 = __________ minutes
  3. dS3= ______________ meters
  4. dS3= ______________ light minutes
  5. dS3= ______________ cm on the graph

Step 4: Finding the Direction to the Gamma-Ray Burst

  1. Angle from the x-axis to the gamma ray burst = ___________ degrees

Reflection Question:

  1. Use the space below and/or the back of this sheet to write your answer.

Math Extension:

  1. Formulae for angle:
    sin θ =_________________________________
    cos θ =__________________________________
    tan θ =__________________________________
  2. Direction to the gamma-ray burst for formula 1 ____________(degrees)
    for formula 2 ____________(degrees)
    for formula 3 ____________(degrees)
  3. Average of three numbers ____________(degrees)
  4. Use the space below and/or on the back of this sheet to write your answer.
  5. Equation for angle = ___________________
  6. θS1= ______________ degrees
    θS3= ______________ degrees

A service of the High Energy Astrophysics Science Archive Research Center (HEASARC), Dr. Andy Ptak (Director), within the Astrophysics Science Division (ASD) at NASA/GSFC