Follow this link to skip to the main content

Life Cycles of Stars (Grades 9-12) - Page 1

The Life Cycles of Stars

I. Star Birth and Life

Imagine an enormous cloud of gas and dust many light-years across. Gravity, as it always does, tries to pull the materials together. A few grains of dust collect a few more, then a few more, then more still. Eventually, enough gas and dust has been collected into a giant ball that, at the center of the ball, the temperature (from all the gas and dust bumping into each other under the great pressure of the surrounding material) reaches 15 million degrees or so. A wondrous event occurs.... nuclear fusion begins and the ball of gas and dust starts to glow. A new star has begun its life in our Universe.

So what is this magical thing called "nuclear fusion" and why does it start happening inside the ball of gas and dust? It happens like this..... As the contraction of the gas and dust progresses and the temperature reaches 15 million degrees or so, the pressure at the center of the ball becomes enormous. The electrons are stripped off of their parent atoms, creating a plasma. The contraction continues and the nuclei in the plasma start moving faster and faster. Eventually, they approach each other so fast that they overcome the electrical repulsion that exists between their protons. The nuclei crash into each other so hard that they stick together, or fuse. In doing so, they give off a great deal of energy. This energy from fusion pours out from the core, setting up an outward pressure in the gas around it that balances the inward pull of gravity. When the released energy reaches the outer layers of the ball of gas and dust, it moves off into space in the form of electromagnetic radiation. The ball, now a star, begins to shine.

New stars come in a variety of sizes and colors. They range from blue to red, from less than half the size of our Sun to over 20 times the Sun�s size. It all depends on how much gas and dust is collected during the star's formation. The color of the star depends on the surface temperature of the star. And its temperature depends, again, on how much gas and dust were accumulated during formation. The more mass a star starts out with, the brighter and hotter it will be. For a star, everything depends on its mass.

Throughout their lives, stars fight the inward pull of the force of gravity. It is only the outward pressure created by the nuclear reactions pushing away from the star's core that keeps the star "intact". But these nuclear reactions require fuel, in particular hydrogen. Eventually the supply of hydrogen runs out and the star begins its demise.

II. Beginning of the End

After millions to billions of years, depending on their initial masses, stars run out of their main fuel - hydrogen. Once the ready supply of hydrogen in the core is gone, nuclear processes occurring there cease. Without the outward pressure generated from these reactions to counteract the force of gravity, the outer layers of the star begin to collapse inward toward the core. Just as during formation, when the material contracts, the temperature and pressure increase. This newly generated heat temporarily counteracts the force of gravity, and the outer layers of the star are now pushed outward. The star expands to larger than it ever was during its lifetime -- a few to about a hundred times bigger. The star has become a red giant.




Back Index Next
Download a pdf version.




 

A service of the High Energy Astrophysics Science Archive Research Center (HEASARC), Dr. Andy Ptak (Director), within the Astrophysics Science Division (ASD) at NASA/GSFC

NASA Logo, National Aeronautics and Space Administration
Goddard